Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Computer Networks ; 212, 2022.
Article in English | Scopus | ID: covidwho-1872993

ABSTRACT

The number of connected mobile devices and Internet of Things (IoT) is growing around us, rapidly. Since most of people's daily activities are relying on these connected things or devices. Specifically, this past year (with COVID-19) changed daily life in abroad and this is increased the use of IoT-enabled technologies in the health sector, work, and play. Further, the most common service via using these technologies is the localization/positioning service for different applications including: geo-tagging, billing, contact tracing, health-care system, point-of-interest recommendations, social networking, security, and more. Despite the availability of a large number of localization solutions in the literature, the precision of localization cannot meet the needs of consumers. For that reason, this paper provides an in-depth investigation of the existing technologies and techniques in the localization field, within the IoT era. Furthermore, the benefits and drawbacks of each technique with enabled technologies are illustrated and a comparison between the utilized technologies in the localization is made. The paper as a guideline is also going through all of the metrics that may be used to assess the localization solutions. Finally, the state-of-the-art solutions are examined, with challenges and perspectives regarding indoors/outdoors environments are demonstrated. © 2022

2.
Studies in Big Data ; 80:91-105, 2020.
Article in English | Scopus | ID: covidwho-1503512

ABSTRACT

In this paper, we performed a comparative analysis using machine learning algorithms named support vector machine (SVM), decision tree (DT), k-nearest neighbor (kNN), and convolution neural network (CNN) to classify pneumonia level (mild, progressive, and severe stage) of the COVID-19 confirmed patients. More precisely, the proposed model consists of two phases: first, the model computes the volume and density of lesions and opacities of the CT images using morphological approaches. In the second phase, we use machine learning algorithms to classify the pneumonia level of the confirmed COVID-19 patient. Extensive experiments have been carried out and the results show the accuracy of 91.304%, 91.4%, 87.5%, 95.622% for kNN, SVM, DT, and CNN, respectively. © Springer International Publishing AG 2018.

3.
Multimodal Image Exploitation and Learning 2021 ; 11734, 2021.
Article in English | Scopus | ID: covidwho-1295153

ABSTRACT

The novel coronavirus 2019 (COVID-19) first appeared in Wuhan province of China and spread quickly around the globe and became a pandemic. The gold standard for confirming COVID-19 infection is through Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay. The lack of sufficient RT-PCR testing capacity, false negative results of RT-PCR, time to get back the results and other logistical constraints enabled the epidemic to continue to spread albeit interventions like regional or complete country lockdowns. Therefore, chest radiographs such as CT and X-ray can be used to supplement PCR in combating the virus from spreading. In this work, we focus on proposing a deep learning tool that can be used by radiologists or healthcare professionals to diagnose COVID-19 cases in a quick and accurate manner. However, the lack of a publicly available dataset of X-ray and CT images makes the design of such AI tools a challenging task. To this end, this study aims to build a comprehensive dataset of X-rays and CT scan images from multiple sources as well as provides a simple but an effective COVID-19 detection technique using deep learning and transfer learning algorithms. In this vein, a simple convolution neural network (CNN) and modified pre-trained AlexNet model are applied on the prepared X-rays and CT scan images. The result of the experiments shows that the utilized models can provide accuracy up to 98% via pre-trained network and 94.1% accuracy by using the modified CNN. © 2021 SPIE.

SELECTION OF CITATIONS
SEARCH DETAIL